ON THE EXISTENCE OF POSITIVE SOLUTIONS ON THE
HALF-LINE TO NONLINEAR TWO-DIMENSIONAL DELAY
DIFFERENTIAL SYSTEMS

CH. G. PHILOS

ABSTRACT. The paper is concerned with a boundary value problem on the
half-line to nonlinear two-dimensional delay differential systems with positive
delays. A theorem is established, which provides sufficient conditions for the
existence of positive solutions. The application of this theorem to the special
case of second order nonlinear delay differential equations is given. Also, the
application of the theorem to two-dimensional Emden-Fowler type delay dif-
ferential systems with constant delays is presented. Moreover, some general
examples demonstrating the applicability of the theorem are included.

1. INTRODUCTION

Recently, the author [31] established sufficient conditions for the existence of
positive increasing solutions of a boundary value problem on the half-line to second
order nonlinear delay differential equations with positive delays. The assumption
that the delays are positive is essential to the approach in [31], and hence the results
given in [31] cannot be applied to the corresponding boundary value problem for
second order nonlinear ordinary differential equations. An old idea that appeared
in the author’s paper [30] plays a crucial role in the study in [31]. (Grains of this
idea were presented in the old paper by Lovelady [19].)

Also, recently, the author [32] studied the problem of the existence of solutions
and of the existence and uniqueness of solutions of a boundary value problem on
the half-line to nonlinear two-dimensional delay differential systems. The methods
applied in [32] are based on the use of the Schauder-Tikhonov theorem and the
Banach contraction principle. The results obtained in [32] include, as special cases,
those given by Mavridis, the present author and Tsamatos [20] for second order
nonlinear delay differential equations.

The work in [31, 32] is closely related to the work in the papers by Mavridis, the
author and Tsamatos [20, 21] and, in a sense, to the work in the paper by Agarwal,
the author and Tsamatos [2].

The present paper is essentially motivated by the recent work in [31] (and, in
a sense, by the recent work in [32]). In this paper, a boundary value problem on
the half-line to nonlinear two-dimensional delay differential systems with positive
delays is considered, and sufficient conditions are given that guarantee the exisence
of positive solutions. The results obtained are not applicable to the correspond-
ing boundary value problem for nonlinear two-dimensional ordinary differential
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systems. The results given in [31] can be derived, as special consequences, from

the ones established here, by reducing a second order nonlinear delay differential

equation to a nonlinear two-dimensional delay differential system of a special form.

The techniques applied in this paper are originated in the ones in [31]; also, some

elements of the methods used in [32] are succesfully employed in the present paper.
Consider the nonlinear two-dimensional delay differential system

(1.1) ) =9ty®), V) =-ftzt-T10), ..zt~ Tn))),

where m is a positive integer, g is a continuous real-valued function on [0, 00) X R,
f is a continuous real-valued function on [0,00) X R™, and T; (j = 1,...,m) are
positive continuous real-valued functions on the interval [0, c0) with

Jim (= T(©) =o0 (G =1,.m).
Let us consider the positive real number 7 defined by

7=—, min min(-T;).

Our interest will be concentrated on global solutions of the delay differential
system (1.1), i.e., on solutions of (1.1) on the whole interval [0,c0). By a solution
on [0,00) of (1.1), we mean a pair of two continuous real-valued functions = and
y defined on the intervals [—7, 00) and [0, c0), respectively, which are continuously
differentiable on [0, co) and satisfy (1.1) for all ¢ > 0.

Together with the delay differential system (1.1), we specify an initial condition
of the form

(1.2) z(t) =¢(t) for —7<t <0,

where the initial function ¢ is a given continuous real-valued fucntion on the interval
[—7,0]. Throughout the paper, it will be assumed that

$(0) =0.
Moreover, along with (1.1), we impose the condition
(1.3) limy(t) =0.

The delay differential system (1.1) together with the conditions (1.2) and (1.3)
constitute a boundary value problem (BVP, for short) on the half-line. A solution
on [0, c0) of (1.1) satisfying (1.2) and (1.3) is said to be a solution of the boundary
value problem (1.1)—(1.3) or, more briefly, a solution of the BVP (1.1)—(1.3).

Proposition 1.1, below, provides a useful integral representation of the BVP
(1.1)—(1.3), which will be used in proving the main result of the paper (and in
proving a basic lemma needed in the proof of our main result). This proposition has
been established by the author [32] for a more general boundary value problem on
the half-line to more general nonlinear two-dimensional delay differential systems,
in which, however, the delays are assumed to be bounded. But, as it is easy to see,
the restriction of the boundedness of the delays is not needed for the validity of the
proposition.

Proposition 1.1. Let z and y be two continuous real-valued functions defined
on the intervals [—T,00) and [0,00), respectively. Then (z,y) is a solution of the
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BVP (1.1)—(1.3) if and only if

_ #(t) for —7<t<0
(1.4) z(t) = { fot g9(s,y(s))ds fort>0

and

L5 oy = /t T H6, 0 (5= Tu(5))s s 5 (5 — Ton(s)))ds for £ 0.

We are interested in studying the problem of the existence of solutions (z,y)
of the BVP (1.1)—(1.3) with z being positive on [—7,00) — {0}. Therefore, in
addition to the assumption that ¢(0) = 0 posed previously, without mentioning it
any further, it will be supposed that

&) >0 for —7<t<O0.

The main result of this paper is Theorem 3.1, which will be stated and proved in
Section 3. This theorem provides sufficient conditions for the BVP (1.1)—(1.3) to
have at least one solution (z,y) such that z is positive on (0, co) and y is positive on
[0, 00). A crucial role in proving Theorem 3.1 plays Lemma 2.1, which will be estab-
lished in Section 2; this lemma gives useful information about the solutions (z,y)
of the BVP (1.1)—(1.3) with z being nonnegative on (0,0). Section 4 is devoted
to the application of Theorem 3.1 (as well as of Lemma 2.1) to the special case of
second order nonlinear delay differential equations. Section 5 contains the applica-
tion of Theorem 3.1 to (nonlinear) two-dimensional Emden-Fowler type differential
systems with constant delays. Also, some general examples, which demonstrate the
applicability of our main result, will be presented in Section 5.

The problem studied in the present paper is closely related to the general prob-
lem of deriving sufficient conditions for the existence of solutions with prescribed
asymptotic behavior to second (or arbitrary) order nonlinear ordinary and delay
differential equations. Among numerous articles dealing with this general problem,
we choose to refer to the most recent papers [1-3, 6—9, 17, 18, 20—22, 24—29, 31,
33—37, 39]; we, also, refer to the old classical articles [13, 14], and to the paper [40].

On the other hand, several articles have appeared in the literature, which are
concerned with the asymptotic behavior of solutions of nonlinear ordinary differen-
tial systems. See, for example, [12, 15, 16, 38]; in particular, see the monograph by
Mirzov (23] and the references cited therein.

For the basic.theory of delay differential equations and systems, the reader is
referred to the books by Diekmann et al. [4], Driver [5], Hale [10], and Hale and
Vertuyn Lunel [11].

2. A BASIC LEMMA

Here, we will establish the following basic lemma.

Lemma 2.1. Assume that the function g is positive on [0, 00) x (0,00), i.e.,

(2.1) 9(t,z) >0 forallt>0and z> 0.
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Also, assume that the function f is positive on [0,00) x (0,00)™, i.e.,
(2.2) fwi,.;wm) >0 forall t >0 and wy; >0, ..., wm > 0.
Let (z,y) be a solution of the BVP (1.1)—(1.3) with x being nonnegative on the

interval (0,00). Then z is always positive on (0,00); moreover, y is positive on

[0, c0).

We notice here that, because of the continuity of g on [0, ) x [0, c0), the hy-
pothesis that g is positive on [0, co) x (0, c0), i.e., that (2.1) holds, implies that the
function g is nonnegative on [0,00) x [0, 0), i.e.,
(2.3) 9(t,z) >0 forall t>0 and z> 0.
Similarily, as f is continuous on [0, 00) x [0, c0)™, the hypothesis that f is positive on
[0,00) % (0,00)™, i.e., that (2.2) holds, guarantees that the function f is nonnegative
on [0,00) % [0,00)™, i.e.,
(2.4) ft,wi,...,wn) >0 forallt>0 and wy > 0,...,w, > 0.

Now, we shall present an observation. Assume that (2.1) holds, and let (z,y)

be a solution of the BVP (1.1)—(1.3) such that y is positive on the interval [0, o).
Then, from the first equation of (1.1), it follows that

z'(t) >0 for everyt>0

and so z is strictly increasing on [0,c0). Hence, as z(0) = ¢(0) = 0, x is positive
on (0,00).

Proof of Lemma 2.1. The proof will be accomplished by proving that y is
positive on the interval [0, co).

First of all, we see that z is nonnegative on the whole interval [—7, 00) and so
we must have z (¢t — T;(t)) > 0 for ¢ > 0 (j = 1,...,m). Consequently, by (2.4),

(2.5) ftz(t—T1(),...,x(t —Tm(t))) >0 for every t > 0.
Moreover, we observe that, by Proposition 1.1, the solution (z,y) satisfies (1.4) and
(1.5).

Now, we will show that y(0) > 0. To this end, by applying (1.5) for ¢t = 0, we
get

(2.6) y(0) = /0 " F(5,2 (5= Tu(5)) s s (5 — Ton()))ds.

As —7 < —T;(0) < 0 (j = 1,...,m), we have z (—T; (0)) = ¢(~T;(0)) >0 (j =
1,...,m). Thus, because of (2.2), we must have

F(0,z (=T1(0)), ...,z (-=T:n(0))) > 0,
ie.,
ftz(t—T1(t), ., o (t — Tn(t))) |y > O-
In view of (2.5) and the last inequality, it follows from (2.6) that y(0) is always
positive.

Next, we shall prove that y is positive on the interval (0,00). Assume, for the
sake of contradiction, that y is not necessarily positive on (0, c0). Then, as y(0) > 0,
we see that y has always zeros in the interval (0, 00). Let o > 0 be the first zero
of y in (0,00); ie., y is positive on [0,%), and y(tp) = 0. In view of (2.1) and
(2.3), it follows from the first equation of (1.1) that z’(¢) > 0 for ¢ € [0,%), and



NONLINEAR DELAY DIFFERENTIAL SYSTEMS 71

z'(tg) > 0. Hence, z is strictly increasing on [0,%) and z is increasing on [0, to].
Thus, as z(0) = #(0) = 0, we see that z is always positive on (0, o). Furthermore,
by taking into account the fact that y(t9) = 0 and applying (1.5) for t = o, we
obtain '

/t " F(5,2 (5= Ti(5)) 3 (5 — Ton(s)))ds = 0.
So, because of (2.5), we must have
2.7 ft,z(t—Ti(¢)),-...,z (¢t — Tn(t))) =0 for every t > to.

By (2.7), the second equation of (1.1) gives /() = 0 for all ¢ > #g, which means
that y is constant on [tg,c0). Hence, since y(tp) = 0, we have y(t) = 0 for every
t > to. So, by taking into account (2.3), from (1.4) we obtain, for each t > ¢,

aﬂ=Al@mm¢+/lwwm@:am+/3@mwzww

to to
Thus, as z(tp) > 0, we have z(t) > 0 for every ¢t > ty. Consequently, z is always
positive on the interval (0, co). Finally, by the assumption that t]im t-T;@t)) =0
(j = 1,...,m), we can consider a point t; > 0 so that t — T;(¢) > 0 for all ¢ > #;
(4 = 1,...,m). Then, as z is positive on (0, 00), we have z (t — T}(t)) > 0 for every
t >1t; (j =1,...,m). Therefore, by using (2.2), we find that
fEtz@E—Ti(®),...,z(t — Tn(£))) >0 forallt>t,

which contradicts (2.7).
The proof of the lemma is complete.

3. THE MAIN RESULT

Our main result is the following theorem.

Theorem 3.1. Let the assumptions of Lemma 2.1 be satisfied, i.e., (2.1) and
(2.2) hold. Moreover, assume that, for each t > 0, the function g(t,-) is increasing
on [0, 00) in the sense that g(t,2z1) < g(t, z2) for any 21,25 in [0, 00) with z < 2.
Also, assume that, for each t > 0, the function f(t,-,...,-) is increasing on [0, c0)™
in the sense that f(t,wi,...,wm) < f(t,v1, ..., Um) for any (W1, ..., W), (V1, -y Vim)
in [0, 00)™ with wy; < vy, ..., Wm < Upy,.

Let there ezists a real number ¢ > 0 so that

(31) | ren® i<

where, for each j € {1,...,m}, the function p; depends on ¢, c, g and is defined by
pt-T;(t), o 0<t<Ty(t)

3.2 (2) = T

(3-2) p;(t) { fg T (2) a(s,)ds, if t > Ty(t).

(Clearly, p; (j =1,...,m) are nonnegative continuous real-valued functions on the
interval [0,00).) Then the BVP (1.1)—(1.3) has at least one solution (x,y) such
that

¢
(3-3) 0<z(t) < / 9(s,c)ds  for every t >0
0
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and

(3.4) 0<y(t) <c foreveryt>D0.

Proof. Let Y be the set of all continuous real-valued functions y defined on the
interval [0, co), that satisfy

(3.5) 0<y(t) <c foreveryt>0.

For any function y in Y, let z denote the continuous real-valued function on the
interval [T, co) defined by the formula (1.4). (Note that ¢(0) = 0.)

Consider an arbitrary function y in Y. Then, in view of (3.5), we can use (2.3)
as well as the assumption that, for each ¢t > 0, the function g(Z,-) is increasing on
[0, 0) to obtain

0<g(ty(t)) <g(,c) fort>0.
This gives
t t
0< / g(s,y(s))ds < / g(s,c)ds fort >0,
0 0

which, by the definition of z by (1.4), is written as

t
(3.6) 0<z(®) < / g(s,c)ds for every t > 0.
0

From (1.4) and (3.6) it follows that, for any j € {1,...,m} and every ¢t > 0,
0<a(t-T(t) =4 (t-T(), H0<t<Ti)
{ 0<a(t-T0) < J; 7 gls,c)ds, if 1> T5(0).
(Note that z(0) = ¢(0) = 0.) Thus, by virtue of (3.2), we have
0<z(t—T;t) <p;(t) foreveryt>0 (j=1,..,m).

Hence, by using (2.4) as well as the assumption that, for each ¢ > 0, the function
f(t,-,...,-) is increasing on [0, c0)™, we find that

(37) 0< f(t,2(E—T10), 0 (t ~ Ton(t)) < £t p1 (€)oo (8)) for £ 0.
Taking into account (3.7), we obtain, for ¢ > 0,

0 < l " F(5,2 (s = T1(5)) , oy 7 (5 — Ton(5)))ds
‘/too f(S, P1 (5) 1+++3 Pm (5))d8
Aoo f(S, pl (S) 3 s=ey pm, (S))d&

and consequently, because of hypothesis (3.1),

IN

IA

cO
(3.8) 0< / f(s,2 (s —T1(s)) ;s 2 (s — Tin(s)))ds < ¢ for every t > 0.
t
As (3.8) holds true for all functions ¥ in Y, we see that the formula

(My)(t) = /t " F5,3 (8= Tu(5)) 3 (s — Ton(s)))ds fort >0
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makes sense for any y in Y, and defines a mapping M of Y into itself. We will show
that the mapping M is increasing with respect to the usual pointwise ordering in
Y. To this end, let us consider two arbitrary functions y and 7 in ¥ with y < 7,
i.e., with y(t) < 7(t) for ¢ > 0. Let Z denote the continuous real-valued function on
[—T,00) defined by the formula (1.4) with Z instead of = and 7 in place of , i.e.,
~ o) for —7<t<0

' t) = —
B:) 2t) { fotg (s,9(s))ds fort>0.
As 0 < y(t) <y(¢) for t > 0, by using (2.3) as well as the assumption that, for each
t > 0, the function g(Z, -) is increasing on [0, c0), we get

0< /(; g9(s,y(s)ds < /0 9(s,9(s))ds fort>0.

So, by taking into account the definitions of z and Z by (1.4) and (3.9), respectively,
we have

0 <z(t) <z(t) foreveryt>0.
Thus, having in mind (1.4) and (3.9), we obtain, for each j € {1,...,m} and every
t >0,
0<z(t-T;@) =¢(E—T;(8) =z (t—T;(t)), f0<t<Ty()
0<z(t-T;() <z (t—-T;(t), ift>T;().
Hence, by the assumption that, for each ¢ > 0, the function f(¢,-,...,-) is increasing
on [0, 00)™, we derive
fz@-Ta(t),- 2zt —Tm(t) < f(,Z(E—T1(1)) , -, B (t — Tm(2)))
for all ¢ > 0. This gives immediately
(My)(t) < (My)(t) for every t >0,
ie., My < My. Consequently, the mapping M is increasing.
Now, we define
yo(t) =c fort>0
and
_ Unidi =My, (n=0,1,..)-
As M is an increasing mapping of Y into itself, it is not difficult to see that
(Yn)n=o,1,... is a decreasing sequence of functions in Y. Set
y= lim y, pointwise on [0, co).

Let z be defined by (1.4). Moreover, for any integer n > 0, let z, denote the
continuous real-valued function on [—7,c0) defined by (1.4) with z,, in place of
and y, instead of v, i.e.,
_f #() for —7<t<O0
Znlt) = { f:g(s, yn(s))ds fort>0."
Then
z = lim z, pointwise on [—7,00).
By (3.7), we have

0< f(t, @ (6= T1(2)) , s T (6 = Ton(8))) < £, 0y (2) ooy )
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for every ¢ > 0 and all nonnegative integers n. As hypothesis (3.1) implies, in
particular, that

/0 " £ 91 (8) s e pr (£))d < 00,

we can apply the Lebesgue dominated convergence theorem to obtain, for every
t>0,

Jm [ 560 (6 = Th(6)) 2 5~ Tl

- /t " F(5,3 (5= T1(5)) s oy 3 (5 — Ton(s)))ds.
Thus, we conclude that
nh_]fgo(M yn)(t) = (My)(t) for every t > 0.
Hence, we have
y(#) = lim gy () = lim (Myn)(t) = (My)(t) for ¢ >0

and consequently y = My, ie., (1.5) holds. Also, (1.4) is satisfied. Therefore,

by Proposition 1.1, (z,y) is a solution of the BVP (1.1)—(1.3). Asy € Y, (3.5)

and (3.6) are satisfied. By (3.6), z is nonnegative on the interval (0,co); hence,

Lemma 2.1 guarantees that x is always positive on (0,00) and, in addition, that y

is necessarily positive on [0, 00). Thus, the solution (z,y) satisfies (3.3) and (3.4).
The proof of the theorem is complete.

It is evident that Lemma 2.1 plays a crucial role in proving Theorem 3.1. More-
over, one may easily see that the proof of Lemma 2.1 is essentially based on the
use of the hypothesis that the initial function ¢ is positive on the interval [—,0)
(as well as on the assumptions (2.1) and (2.2)). This hypothesis is fundamental,
because of the fact that 7 > 0, which is a consequence of the fact that the delays T}
(4 =1, ..,m) are positive on the interval [0,00). It is clear that such a hypothesis
cannot be posed in the case of the nonlinear two-dimensional ordinary differential
systems, and hence Lemma 2.1 (and, consequently, Theorem 3.1) cannot be ap-
plied to the corresponding ordinary boundary value problem. More precisely, let
us consider the nonlinear two-dimensional delay differential system

(3.10) @) = 9(ty(®), Y@ =—fo(t,z(t— 1)),
where fo is a continuous real-valued function on [0, 00) X R, and 7 is a positive real

constant. For 7 = 0, system (3.10) reduces to nonlinear two-dimensional ordinary
differential system

(3-11) () =9(t,u(), ¥(t)=—fo(t (),
and the initial condition (1.2) becomes
(3.12) #(0)=10.

That is, when 7 = 0, the BVP (3.10), (1.2), (1.3) reduces to the BVP (3.11), (3.12),
(1.3). Lemma 2.1 and Theorem 3.1 can be applied to the delay BVP (3.10), (1.2),
(1.3), while these results are not applicable to the ordinary BVP (3.11), (3.12),
(1.3)-
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4. APPLICATION TO SECOND ORDER NONLINEAR DELAY
DIFFERENTIAL EQUATIONS

Consider the second order nonlinear delay differential equation

(4.1) [z @) + £,z (¢~ 1)),y 2 (¢ — Tm(t))) =0,

where r is a positive continuous real-valued function on the interval [0,00). We
are interested in solutions of (4.1) on the whole interval [0,00). By a solution
on [0,00) of (4.1), we mean a continuous real-valued function z defined on the
interval [—7,00), which is continuously differentiable on [0, c0) and such that rz’
is continuously differentiable on [0, co) and (4.1) is satisfied for all £ > 0. With the
delay differential equation (4.1), we associate the initial condition (1.2) as well as
the condition

(4.2) Jim r(E)z'(t) =0.

Equations (4.1), (1.2), (4.2) constitute a boundary value problem (BVP, for short)
on the half-line. A solution of the BVP (4.1), (1.2), (4.2) is a solution on [0, c0) of
(4.1) that satisfies the conditions (1.2) and (4.2).

The substitution 7z’ = y transforms the second order nonlinear delay differen-
tial equation (4.1) into the equivalent nonlinear two-dimensional delay differential
system
43) =m0 VO = —FEsETa), s~ Tn®))

By this substitution, the BVP (4.1), (1.2), (4.2) is transformed into the equivalent
BVP (4.3), (1.2), (1.3), which is a special case of the BVP (1.1)—(1.3).

For our convenience, we introduce some notation. By R we will denote the

continuous real-valued function on the interval [0,00) defined by the formula

R(t):/ot;% for ¢ > 0.

Clearly, R(0) =0, and R is positive on (0, c0).
By specifying Theorem 3.1 to the BVP (4.3), (1.2), (1.3), we are led to the
following result concerning the BVP (4.1), (1.2), (4.2).

Corollary 4.1. Assume that the function f is positive on [0,00) X (0,00)™,
i.e., (2.2) holds. Moreover, assume that, for each t > 0, the function f(t,-,...,-) is
increasing on [0, 00)™.

Let there exist a real number ¢ > 0 so that

/ f (t’ O.l(t)7 ] a-m(t)) dt S C,
0
where, for each j € {1,...,m}, the function o; depends on ¢, c, r and is defined by
U‘(i): ¢(t_T."i(t))9 Zf OStSfZ}(t)
g CRE-Ty1), i t>Ty0)-

(Clearly, o; (j =1, ...,m) are nonnegative continuous real-valued functions on the
interval [0,00).) Then the BVP (4.1), (1.2), (4.2) has at least one solution z such
that

0<z(t) < cR(t) foreveryt>0
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and
0<r@t)z'(t) <c for everyt>0.

By applying Corollary 4.1 to the particular case where r(t) = 1 for t > 0, we
immediately arrive at the main result in the recent author’s paper [31]. (Note that,
in this particular case, we have R(t) =t for ¢ > 0.)

For the sake of completeness, we also give the application of Lemma 2.1 to the
BVP (4.1), (1.2), (4.2). By specifying Lemma 2.1 to the BVP (4.3), (1.2), (1.3),
we get the next result.

Assume that (2.2) holds. Let = be a solution of the BVP (4.1), (1.2), (4.2) that is
nonnega,twe on the interval (0,00). Then z is always positive on (0, c0); moreover,
z' s positive on [0, 00) (and so =z is strictly increasing on [0, c0)).

In the particular case where r(¢t) = 1 for ¢ > 0, the above result has been
established by the author in [31].

Before closing this section, let us consider the particular case where the first
equation of (1.1) is linear, ie., the case of the nonlinear two-dimensional delay
differential system

(4.4) ' (t) = q@)y(t), ¥ (t) =—f(t,xE—Ti(t)),. z (t — Tm(?))),
where g is a positive continuous real-valued function on the interval [0, c0). Theorem
3.1 can be applied to the BVP (4.4), (1.2), (1.3). On the other hand, we immediately

see that (4.4) can be transformed into the equivalent second order nonlinear delay
differential equation

(45) |57 + 16,56~ B0, 26~ Ta)) =0
With (4.5), we associate the initial condition (1.2) and the condition
(4.6) Jim q(t) @'(t) =

It is remarkable that, instead of applying Theorem 3.1 to the BVP (4.4), (1.2),
(1.3), one can apply Corollary 4.1 to the BVP (4.5), (1.2), (4.6).

5. APPLICATION TO NONLINEAR TWO-DIMENSIONAL DELAY
DIFFERENTIAL SYSTEMS OF EMDEN-FOWLER TYPE.
EXAMPLES

Consider the nonlinear two-dimensional delay differential system of Emden-
Fowler type

m
(5-1) () =) ly()1 seny(®),  ¥'(&) =— > p; () |e(t — ;)" sgna(t — 7;),
i=1
where m is a positive integer, g is a positive continuous real-valued function on the
interval [0,00), p; (j = 1,...,m) are nonnegative continuous real-valued functions
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on [0,00), 7; (j =1, ...,m) are positive real constants, and 8 and v; (j =1,...,m)
are positive real numbers. It will be supposed that

m
ij(t) >0 forallt>0.
j=1
We notice that, as p; (j = 1,...,m) are nonnegative on [0, 00), the last hypothesis
means exactly that, for each t > 0, there exists at least one indez j € {1,...,m} so
that p;(t) > 0.
Set

T= mmax Tj.
9=1,sc;m

(T is a positive real number.) Our interest is concentrated on solutions of (5.1) on
the whole interval [0, 00). A solution on [0,00) of (5.1) is a pair of two continuous
real-valued functions z and y defined on the intervals [—7, c0) and [0, co), respec-
tively, which are continuously differentiable on [0, co) and satisfy (5.1) for all ¢ > 0.
The initial condition (1.2) as well as the condition (1.3) are associated with the
delay differential system (5.1). Hence, we have the BVP (5.1), (1.2), (1.3).

For our convenience, we denote by @ the continuous real-valued function on the
interval [0, 00) defined by the formula

Q) = /Ot g(s)ds for¢>0.

Note that Q(0) = 0 and that Q is positive on (0, c0).
By applying Theorem 3.1 to the particular case of the BVP (5.1), (1.2), (1.3),
we are led to the following corollary.

Corollary 5.1. Let there exist a real number ¢ > 0 so that

cO

ng</(; [¢(t — Tj)]7j Dj (t)dt + J:Zl Ps /T [Q(t _ Tj)]"Yj D; (t)dt L

Then the BVP (5.1), (1.2), (1.3) has at least one solution (z,y) such that
(5.2) 0 < z(t) < PQ(t) for every t >0
and (3.4) holds.

Now, in order to present some examples demonstrating the applicability of our
theorem, we shall concentrate on nonlinear two-dimensional Emden-Fowler type
delay differential systems with one constant delay.

Let us consider the delay differential system of Emden-Fowler type

(63)  ZO=a@) WO seny(®), () = () a(t — )|" sgnz(t - 7),
where p and q are positive continuous real-valued functions on the interval [0, o),
T 18 a positive real constant, and [ and v are positive real numbers.

In the particular case of the BVP (5.3), (1.2), (1.3), Corollary 5.1 is formulated
as follows.

Let there exist a real number ¢ > 0 so that
(o)

(5.4) / "8 — )] p(t)de + [ Qe-nrsmd<e

T
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Then the BVP (5.3), (1.2), (1.3) has at least one solution (x,y) such that (5.2) and
(3.4) hold.

Example 5.2. Consider the BVP (5.3), (1.2), (1.3) with By = 1. In this case,
condition (5.4) is written as

oo

[ -t e [ Qe <.
1)

T

or

(55) | we-nrstds <. {1- [ 1ae- ' p(et}

We see that, if

5:6) [ ee-nrama<,
then inequality (5.5) holds true (as an equality) for

[Tt - pe)dt
57) b ey e eyl

Clearly, c is a positive real number. So, we arrive at the next result.

Assume that By = 1. Let condition (5.6) be satisfied, and let ¢ > 0 be the real
number given by (5.7). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

Example 5.3. Let us consider the BVP (5.3), (1.2), (1.3) with By = 1. Here,
condition (5.4) becomes

(os]

[ vt peas+ e [T e - o <.
0

T

namely

(58  c- { [ iae- r)]‘*p(t)dt} /2~ ["pe - sa >0

Assume that
(5.9) /°° [Q —7)]" p(t)dt < oco.

Following the lines of Example 1 in the author’s paper [31], we can show that (5.8)
holds with ¢ > 0 if and only if

e > (3 e-nrpva

+\/ {3 1ae- r)]'*p(t)dt}2 + [ -1 s ) )
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Thus, we conclude that (5.8) is valid (as an equality) for

(5.10) c= (% / ” [Q( — )] p(t)dt

+\/ {% / ” [Q(t—"f)]”p(t)dt}2+ / ' [qs(t—T)Pp(t)dt)z-

Hence, we obtain the following result.

Assume that By = % Let condition (5.9) be satisfied, and let ¢ > 0O be the real
number given by (5.10). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

Example 5.4. Consider the case of the BVP (5.3), (1.2), (1.3) with By = 2.
In this case, condition (5.4) takes the form

[ we-nrsea+e [~ ee-nrswd<e
0

-
ie.,

(5.11) {[ 106~ et~ e+ [ 86— p0as <o.

After a long analysis similar to that used by the author in Example 2 in [31], we
can conclude that, if

(5.12) { [ 1ae- T)]”p(t)dt} / "8 — ) p(e)dt < 1,
then (5.11) holds (as an equality) for

1—/1-4{ [ Q@ — " p(t)dt} f7 [$(t — 7" ple)de
€= = .
2[77QE— )" p(t)dt
Thus, we are led to the next result.
Assume that (v = 2. Let condition (5.12) be satisfied, and let ¢ > 0 be the real

number given by (5.13). Then the BVP (5.3), (1.2), (1.3) has at least one solution
(z,y) such that (5.2) and (3.4) hold.

(5.13)

Before closing this section and ending the paper, we note that, by the use of
the particular results obtained in the above general examples, one can construct
specific examples in which our theorem is applicable. For such specific examples to
the special case of second order nonlinear delay differential equations, we refer.to .
the recent our paper [31].
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